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Despite extensive study, there remain significant questions about the Reynolds-number
scaling of the zero-pressure-gradient flat-plate turbulent boundary layer. While the
mean flow is generally accepted to follow the law of the wall, there is little consensus
about the scaling of the Reynolds normal stresses, except that there are Reynolds-
number effects even very close to the wall. Using a low-speed, high-Reynolds-number
facility and a high-resolution laser-Doppler anemometer, we have measured Reynolds
stresses for a flat-plate turbulent boundary layer from Reθ = 1430 to 31 000. Profiles
of u′2, v′2, and u′v′ show reasonably good collapse with Reynolds number: u′2 in a new
scaling, and v′2 and u′v′ in classic inner scaling. The log law provides a reasonably
accurate universal profile for the mean velocity in the inner region.

1. Introduction
Modern turbulent-boundary-layer calculation methods must use turbulence models,

since direct numerical simulation of the Navier–Stokes equations is well beyond
the reach of present day computers except at very low Reynolds numbers. Model
developers must rely on the experimental database to formulate and validate new
models. Unfortunately, because of the expense of large-scale facilities, and the difficulty
in accurately measuring high-Reynolds-number flows, the vast majority of available
data have been acquired at low Reynolds numbers. Because most applications of
engineering interest are at much higher Reynolds numbers, it is critical to understand
the dependence of the flow on Reynolds number.

The over-arching goal of our research program is to study non-equilibrium
boundary-layer scaling with Reynolds number. To that end, it is an essential starting
point to define an equilibrium boundary layer. It should be noted that the phrase
‘equilibrium layer’ was used by Townsend (1961) to mean a region of a boundary
layer where the local rates of energy production and dissipation are equal, and the
phrase ‘equilibrium boundary layer’ has been used to mean that Ue ∼ xa (Ue is the
velocity at the edge of the boundary layer), or that δ∗/τw(dp/dx) equals a constant (δ∗
is the boundary-layer displacement thickness), or that the velocity defect profiles have
attained complete similarity (Bradshaw 1967). These definitions include variously con-
figured adverse pressure gradient and constant shear stress boundary layers, and may
or may not encompass the zero-pressure-gradient boundary layer. Here, we are using
a narrower, but perhaps more applicable definition: an equilibrium boundary layer
is a wall-bounded flow where the shear stress distribution is in equilibrium with the
shear stress at the wall. This is an equilibrium in the sense that it is the state that an
unperturbed two-dimensional boundary layer will naturally attain, and it is the state
that a perturbed boundary layer will revert to once the perturbation, e.g. curvature or
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Figure 1. Side view of the pressure vessel and wind tunnel.

Reθ Ue (m s−1) δ (mm) θ (mm) ∆ (mm) H G K × 106 Symbol

1430 6.04 31.25 3.69 118 1.43 6.72 0.11 4
2900 9.83 37.93 4.54 153 1.38 6.79 0.06 �
5200 18.95 35.87 4.19 149 1.36 6.92 0.03 ◦

13 000 14.36 34.56 3.78 139 1.31 6.57 0.01 •
31 000 17.15 35.58 3.66 139 1.27 6.37 0.00 �

Table 1. Flat-plate profiles: outer variables, integral parameters, and pressure gradient parameters.
Note: δ is ‘δ99’, and ∆ is the Clauser–Rotta lengthscale, δ∗Ue/uτ.

pressure gradient, is removed. The equilibrium-boundary-layer concept will provide
a framework for our study of perturbed boundary layers, and lead to methods for
prediction and scaling of high-Reynolds-number non-equilibrium boundary layers.

The goal of this paper is to quantify the equilibrium turbulent boundary layer
by measuring and scaling the mean flow and the Reynolds stresses over a large
Reynolds-number range. For clarity, each flow quantity is discussed in a separate
section. Each section starts with a brief literature review, then presents our own
results, and concludes with a discussion.

2. Facility and experimental techniques
A new facility was built for this study, consisting of a laboratory-scale wind-tunnel

entirely enclosed in a pressure vessel. The Reynolds number can be varied by a factor
of 8 by changing the ambient density, and an additional factor of 3 by changing
the free-stream velocity, resulting in a total Reynolds-number range of approximately
24 : 1. This facility allows independent variation of the Reynolds number, since the
Mach number is always below 0.05, and the boundary-layer thickness at a given
position is approximately constant (see table 1).

A side view of the pressure vessel and wind tunnel is shown in figure 1. Increasing
the ambient pressure in and around the wind tunnel by enclosing it in a pressure vessel
allows standard wind-tunnel construction of wood and Plexiglas. This is economical,
and makes the experiment easy to modify. The pressure vessel supports 8 atmospheres,
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and has a hinged end-bell which provides access to the entire inner diameter. When
this door is closed, the wind tunnel becomes a semi-sealed closed circuit, which
keeps the laser-Doppler anemometer (LDA) seed particles recirculating. Starting with
the return leg in the lower right hand side of figure 1, the air passes through a
heat exchanger, and then enters a flexible duct to direct it into the blower. At the
entrance of the duct, an air-brush sprays a fine water mist to introduce 0.45µm
diameter polystyrene spheres into the air for LDA seed. After the blower, the air
passes through flow-conditioning screens, grids, and honeycombs, and then a 5 : 1
contraction, before entering the development length. The test section is 152 mm high,
by 711 mm wide, with a free-stream turbulence level of 0.2%.

With the exception of the lowest-Reynolds-number case, the boundary layer was
tripped 150 mm downstream of the contraction, using a plastic rectangle which was
1.6 mm high, and extended 6.4 mm in the streamwise direction. This results in a
development length of 1500 trip heights before the location where the flat-plate
profiles are measured. For the lowest-Reynolds-number case (Reθ = 1430), a suction
slot was used to start a new boundary layer 400 mm downstream of the contraction,
and a trip was placed 250 mm further downstream. The profile was taken 1020 trip
heights downstream of the trip.

The flat-plate boundary layer was measured on the floor of the wind tunnel, along
the centreline of the test section. The tunnel has a constant cross-sectional area, so the
boundary-layer growth results in a slightly favourable pressure gradient, making these
boundary layers not truly zero-pressure-gradient boundary layers. Table 1 shows the
acceleration parameter,

K =
ν

U2
e

dUe

dx
, (2.1)

which indicates the acceleration is insignificant for the Reθ = 2900 case and above,
and very small for the Reθ = 1430 case. Note that substantial deviation from the log
law occurs only for K > 1.6× 10−6 (Patel 1965).

The goal of this experiment is to measure high-Reynolds-number turbulence, so
a measurement system with sufficient spatial resolution is necessary. This required
development of a custom-built two-component high-resolution LDA. This LDA forms
a measurement volume with three beams which are frequency-shifted differently, and
then extracts two-component velocity information from each Doppler burst using a
Fourier transform. Extensive design details, qualification experiments, and uncertainty
analysis are given in DeGraaff & Eaton (2000), with further details in DeGraaff (1999).

By focusing the beams to very narrow waists, and using side-scatter collection optics,
we were able to attain a measurement volume 35 µm in diameter, and 60 µm in length.
These dimensions were measured directly, since simple lens formula predictions break
down when real lens effects (e.g. manufacturing tolerances, spherical abberation) and
Gaussian beam optics determine the actual beam waist sizes. Resolution issues and
comparisons to hot-wires and cross-wires will be discussed below along with the
turbulence measurements.

A summary of the uncertainty analysis for the LDA measurements is shown in
table 2 (from DeGraaff & Eaton 2000). The turbulence quantity uncertainties vary
greatly when presented as a percentage of their local value, since the quantities go
to zero at the wall. The values listed in table 2 are uncertainties in the centre of the
profiles, where the uncertainties are a fairly constant percentage of their local values.
This table provides a general guideline for examining velocity profiles, noting that
near-wall uncertainties are generally higher.
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U ±1.5%

u′2 ±4%

v′2 ±8%
u′v′ ±10%

Table 2. Uncertainty guidelines.

Except where explicitly noted (figure 11 only), all velocity data were measured with
the high-resolution LDA system.

3. Results and discussion
3.1. Streamwise mean velocity

Perhaps the most celebrated analytical result in fluid dynamics is the law of the wall.
This derives from the argument that once the surface shear stress is determined, the
flow near a smooth wall depends only on the distance to the wall and the fluid
properties. This assumes that the only effect of the boundary-layer edge velocity and
boundary-layer thickness, as well as overall geometry and upstream history, is to
determine the wall shear stress (Bradshaw & Huang 1995). This leads directly to the
expression

U+ = F1(y
+), (3.1)

or equivalently (Rotta 1962; Landau & Lifshitz 1987),

∂U

∂y
=
uτ

y
F2(y

+), (3.2)

where

U+ ≡ U

uτ
, (3.3)

y+ ≡ yuτ

ν
, (3.4)

and

uτ ≡
√
τw

ρ
. (3.5)

In the very near-wall region, the viscosity dominates, and (3.1) becomes

U+ = y+. (3.6)

Further from the wall, we expect that viscosity plays a negligible role, and F2(y
+)

(equation (3.2)) is simply a constant (defined to be 1/κ). Equation (3.2) can then be
integrated to give the logarithmic law of the wall, or ‘log law’:

U+ =
1

κ
ln y+ + B. (3.7)

This result can also be derived more generally using asymptotic expansions (Tennekes
& Lumley 1972). The log law has proved to be an effective universal curve for the
mean velocity profile in the inner region of the flat-plate turbulent boundary layer,
generally defined as y/δ < 0.2 (δ will be understood to mean δ99: the height where
the velocity is 99% of the free-stream velocity). Only recently have doubts about its
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Figure 2. Flat-plate mean streamwise velocity. Symbols in table 1.
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Figure 3. Flat-plate mean streamwise velocity: sublayer. Symbols in table 1.

validity begun to arise. The question is whether the log law is really Reynolds-number
independent, and whether a power law with Reynolds-number dependence would be
more correct (Barenblatt 1993; George & Castillo 1997; Zagarola, Perry & Smits
1997). With the exception of a few objectors, however, the log law is still generally
accepted as the universal profile of the mean velocity in the inner region of the
turbulent boundary layer, and it is an integral part of many turbulence models. It
should be noted that experimental uncertainty in the available data, and the restricted
Reynolds-number range of most experiments, have precluded the selection of the best
profile model on a purely empirical basis.

Mean profiles are shown in inner coordinates in figure 2. There is good agreement
with the law of the wall from y+ = 50 to y/δ = 0.2, and good agreement with
U+ = y+ below y+ = 4. A closeup of the near-wall region is shown in figure 3.
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Reθ uτ (m s−1) ν/uτ (µm) Cf/2× 103 τw (Pa) ∆U/uτ

1430 0.269 57.8 1.98 0.086 1.89
2900 0.403 38.2 1.68 0.193 2.32
5200 0.727 21.2 1.47 0.629 2.67

13 000 0.512 7.97 1.27 1.207 2.34
31 000 0.573 3.55 1.12 3.033 2.15

Table 3. Flat-plate profiles: log law fit results.

Unfortunately, these data cannot provide definitive answers to the questions re-
garding the validity of the law of the wall, because we derived the wall shear stress
from a best fit to the log law between y+ = 50 and y/δ = 0.2, using the Coles log law
constants: κ = 0.41 and B = 5.0. This method is equivalent to using a Preston tube
or any other device which relies on the existence of a law of the wall (Bradshaw &
Huang 1995). The inner scales resulting from this fit are shown in table 3.

Although it would be circular to attempt to prove the law of the wall with data
that is scaled by fitting the law of the wall, there are two independent confirmations
which suggest that uτ is well estimated by the log law fit. As figure 3 shows, the
measurements of U+ vs. y+ in the sublayer agree very closely with the prediction
U+ = y+. Also, looking ahead to figure 25, the total shear stress is equal to u2

τ near
the wall within experimental uncertainty. These data indicate two things: that the law
of the wall is fairly accurate over this Reynolds-number range, and that any attempt
to ‘prove’ or ‘disprove’ the law of the wall in an external boundary layer will need
to measure the wall shear stress extremely accurately in order to see any significant
differences.

A brief study was made to determine the best log law constants from these five
profiles. The value of κ was varied from 0.39 to 0.45, and B was allowed to float to
minimize the error. The quality of the fit, as evaluated by the mean square differences
between the data and the log law, was essentially constant for the different values of
κ. It is evidently not possible to define a best κ and B when the wall shear stress is
not known independently.

For the purpose of finding self-similar profiles, the boundary layer must be divided
into the inner and outer layers (Townsend 1956). In the outer layer, the flow is assumed
to be independent of viscosity, and the wall shear stress acts only to prescribe a near-
wall velocity needed for matching with the inner layer. Outer scales depend on the
global properties of the flow, e.g. δ and Ue. The proper scaling is generally considered
to be

Ue −U
uτ

= F3

(y
δ

)
, (3.8)

and is known as the velocity defect law (Clauser 1956). These data are plotted in
defect coordinates in figure 4. The profiles are well collapsed throughout the outer
region of the boundary layer. The function F3 must also take the form of a logarithm
in any region of overlap with the log law of the inner layer, giving the form

Ue −U
uτ

= −1

κ
ln
y

δ
+ C. (3.9)

This can be expressed as a composite expansion in two different lengthscales, to give
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Figure 4. Flat-plate mean streamwise velocity in deficit coordinates. Symbols in table 1.

the law of the wall plus the law of the wake of Coles (1956):

U+ = F1(y
+) +

Π

κ
W
(y
δ

)
. (3.10)

While the universality of the law of the wall is rarely questioned, the universality
of the law of the wake is somewhat in doubt. Analysing all available data, Coles
(1962) concluded that the wake parameter, ∆U/uτ asymptotes to a constant value
for Reθ > 6000. Later experiments, however, have indicated that the wake parameter
starts to decrease for Reθ > 15 000 (Mabey 1979; Fernholz & Finley 1996; Gad-
el-Hak & Bandyopadhyay 1994). A slow decrease in the wake parameter at high
Reynolds number is also predicted by the closure model of Perry, Marusic & Li
(1994), which relates the shear stress distribution to the streamwise rate of change
of the wake parameter. Note that their definition of an equilibrium boundary layer
is d (∆U/uτ)/dx = 0, and, hence, a zero-pressure-gradient boundary layer is a ‘quasi-
equilibrium’ boundary layer in their terminology.

This slow decrease at high Reynolds number is evident in figure 5. The solid circles
should be compared with the Coles fit, since these log law constants are the same
as those used by Coles (1956). The open circles are derived from the Zagarola et
al. (1997) log law constants, and the open diamonds are from the log law constants
of Osterlund (1999). Although the magnitude of the wake parameter is a strong
function of the log law constants, all three sets of constants show a rapid increase
for Reθ < 6000, followed by a slight drop between Reθ = 6000 and 12 000. At very
high Reynolds number, the Osterlund constants result in a constant wake parameter,
while the Coles and Zagarola constants give a wake parameter which continues to
decrease. If ∆U/uτ continues to drop with increasing Reynolds number, then the law
of the wake is not universal, even at high Reynolds number. This could be explained
by changes in the outer layer owing to slowly varying dδ/dx or δ/uτ(duτ/dx) with
increasing Reynolds number. A decrease could also be explained by log law constants
which are functions of Reynolds number, i.e. a failure of the log law to correctly
collapse the inner region. Note that the uncertainty of the wake parameter due to the
uncertainty in the velocity is ±3%.
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Figure 6 shows the variation of Cf with Reθ, compared with the empirical fit of
Coles (1962), and the 1

7
th power law correlation. The data indicate that the exponent

in the power law is a decreasing function of Reθ, and that Cf estimates based on the
1
7
th power law are only accurate at low Reynolds number.

3.2. Streamwise normal stress

It is generally assumed a priori that if the mean flow near the wall scales on inner
coordinates, then so too must the Reynolds stresses, which rely on the mean gradients
for their energy (Townsend 1956; Tennekes & Lumley 1972):

u′2/u2
τ = F4(y

+), (3.11)

v′2/u2
τ = F5(y

+), (3.12)

u′v′/u2
τ = F6(y

+). (3.13)
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Thus, the Reynolds stresses are almost always normalized by inner scales, uτ, and ν/uτ
(indicated by a ‘+’ superscript). Unfortunately, the collapse of the Reynolds stresses
in inner scaling is generally not supported by measurements.

Profiles of u′2
+

which resolve the near-wall behaviour show a peak very near the
wall. The magnitude and location of this peak as a function of Reynolds number is
still in doubt. Klewicki, Murray & Falco (1994) found an empirical fit for the peak
magnitude of the stream-wise normal stress:

u′2
+

max = 8.5× 10−9 Reθ
2 + 4.8× 10−4 Reθ + 6.86. (3.14)

By plotting data from 18 different experiments (16 hot-wire and 2 LDA) from
Reθ = 300 to Reθ = 20 000, Mochizuki & Nieuwstadt (1996) conclude that the peak
value is essentially constant:

u′2
+

max = 7.34. (3.15)

They also found that the location of the peak follows the trend:

y+(u′2
+

max ) = 1.7× 10−4 Reθ + 14.4. (3.16)

The flat-plate data from Purtell, Klebanoff & Buckley (1981) show an increasing peak

value of u′2
+

up to Reθ = 1340, followed by a slowly decreasing peak for Reynolds
numbers up to 5100. Andreopoulos et al. (1984) show a steady decline with increasing
Reynolds number for Reθ from 3600 to 15 400. A thorough review by Gad-el-Hak &
Bandyopadhyay (1994) concludes that there is no definite trend except perhaps an

initial rise, and then a slow drop of the peak value of u′2
+

. They further conclude that
‘the data . . . indicate that the turbulence intensity profiles do not collapse even deep
into the inner layer.’ Sreenivasan (1989) shows data from ten experiments over a wide

Reynolds-number range, and concludes the y+ location of the peak u′2
+

is ‘sensibly
independent of Reynolds number.’

Still more data are summarized by Fernholz & Finley (1996), who state that there is

a weak Reynolds-number dependence in the peak value of u′2
+

, as well as a possible

rise in the location of the peak u′2
+

from y+ = 12 to y+ = 16 with increasing Reynolds
number. Further from the wall, all of the profiles show a consistent increase in the

magnitude of u′2
+

with Reynolds number. In fact, some of the highest-Reynolds-

number cases show a second maximum in the u′2
+

profiles at y+ ≈ 400) (Bruns,
Dengel & Fernholz 1992; Fernholz et al. 1995).

Marusic, Uddin & Perry (1997) have proposed a universal curve for u′2
+

in terms
of y/δ and y+ for the region y+ > 100 based on the attached eddy hypothesis of
Townsend (1976). Their formulation includes a logarithmic region in the inner layer,
with a viscous deviation near the wall, a wake deviation in the outer region, and
switching functions to turn these deviations on and off. Their formulation predicts

that u′2
+

in the inner region will rise without limit for a fixed y+ as the Reynolds
number increases. This is consistent with the scaling which will be presented here
(assuming that Cf goes to zero as Reθ goes to infinity). Their formulation, however,
predicts this rise to be logarithmic, while the scaling used here, C−0.5

f , goes to infinity

much more slowly (as evidenced by the over-prediction of Cf by the 1
7
th power law

at high Reynolds number in figure 6).
Figure 7 shows u′2 in inner coordinates, and clearly demonstrates that the magnitude

of u′2
+

is a strong function of Reynolds number throughout the entire inner region
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except the sublayer. The near-wall peak occurs at y+ = 14, and grows in magnitude

with increasing Reynolds number. Figure 8 shows u′2
+

plotted against y/δ. The

increasing value of u′2 in the outer region with Reynolds number is again evident.
Note that we have elected to use δ as the outer lengthscale for all of the turbulence

quantities because it is more independent of the velocity profile shape than the
integral parameters. Many researchers prefer to use integral lengthscales because of
a perceived large uncertainty in measuring δ. Since δ depends only on the velocity
magnitudes relative to each other, however, systematic uncertainty in the velocity
measurement does not contribute to uncertainty in δ. Provided that the flow facility is
steady, only statistical uncertainty of the mean velocity measurements contributes to
uncertainty in δ. This can be calculated with a perturbation analysis (Moffat 1988),
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which estimates the uncertainty in δ for the Reθ = 31 000 case to be ±3%, and for
the lower-Reynolds-number cases, ±1%.

A close up of the normal stress in the sublayer is shown in figure 9. Also shown in

the plot is the first term of the Taylor series expansion of u′2
+

around y = 0 (Monin
& Yaglom 1971):

u′2
+

= A1(y
+)2 + · · · . (3.17)

When evaluating the constant, we should keep in mind that the uncertainty in the
sublayer velocity measurements is large. The best-fit value of A1 is approximately
0.16, and (3.17) is accurate for y+ < 4.

The ratio of
√
u′2 to the streamwise mean velocity at each point is shown in figure

10, compared with the calculation of Spalart (1988). This ratio is poorly behaved near
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the wall since both u′2 andU go to zero. The agreement of the data with the calculation
at the wall provides a stringent check on the accuracy of the near-wall measurements.

The profiles which extend below y+ ≈ 3 show the limiting value of
√
u′2/U at the wall

is approximately 0.41 (1430 < Reθ < 5200). This value is also confirmed by the direct
numerical simulation of Antonia & Kim (1994), and the hot-wire measurements of
Alfredsson et al. (1988). Note that in the sublayer, where U+ = y+, this limiting value

can be estimated using the near-wall expression u′2
+

= 0.16(y+)2 shown in figure 9.

This predicts that the sublayer value of
√
u′2/Ulocal = 0.40, which agrees within the

uncertainty of the measurement.

The increasing trend in
√
u′2/U with Reynolds number for y+ > 6 further confirms

that u′2 scales differently from the mean velocity.

3.2.1. Hot-wire spatial resolution

While the increase in u′2
+

in the outer region has been observed by many work-
ers, the steady increase of the near-wall peak (y+ = 14) with increasing Reynolds
number is contrary to the conclusion of many hot-wire experiments which find an
essentially constant near-wall peak (Mochizuki & Nieuwstadt 1996), or a peak which
initially increases, and then decreases with increasing Reynolds number (Gad-el-Hak
& Bandyopadhyay 1994). It is well known that there is a strong effect of hot-wire
length (non-dimensionalized by ν/uτ) on the measured value of u′2 (Sreenivasan 1989;
Klewicki et al. 1994; Fernholz & Finley 1996). Since a hot wire measures the average
heat transfer rate over its length, it will attenuate the measured velocity fluctuation
if that fluctuation occurs over a lengthscale smaller than the length of the hot wire.
The question then becomes: what fraction of the turbulent kinetic energy is carried
by eddies smaller than the wire length? The attenuation of u′2 will be proportional to
the fraction of energy carried by these small eddies. If the characteristic eddy size is
taken to be the distance to the wall (Tennekes & Lumley 1972), and it is assumed that
a non-negligible fraction of the turbulent kinetic energy is carried by eddies with size
of the order of the distance to the wall, then a hot wire will significantly attenuate
the measured turbulence when it is positioned closer to the wall than its length, i.e.
y+ < l+. When taken with the requirement that l/d of a hot wire must be greater
than 200 to avoid conduction errors, the hot wire becomes rather limited: in order
for a 2.5 µm diameter hot wire to measure accurately the near-wall peak in u′2 at
y+ = 14, the viscous lengthscale, ν/uτ, must be larger than approximately 36 µm. This
corresponds to a low Reynolds number unless the flow facility is extremely large.

One of the most stringent tests for resolution errors is the previously discussed ratio:√
u′2/U. The LDA results for Reθ = 1430 and Reθ = 13 000 are compared to hot-wire

measurements in figure 11. The hot-wire data were taken with a constant-temperature
2.5 µm diameter hot wire (overheat ratio of 1.8). The active length of the wire was
600 µm, which gives l+ = 10 for the Reθ = 1430 case, and l+ = 75 for the Reθ = 13 000
case. Consistent with the scaling argument that l+ should be of the same order or
greater than y+ to obtain accurate u′2, the hot-wire measurements of u′2 become
increasingly attenuated below approximately y+ ≈ 8 for the low-Reynolds-number
case, and y+ ≈ 80 for the higher Reynolds number.

This hot-wire size limitation is confirmed by Alfredsson et al. (1988), who conclude

that hot wires need l+ < 6 to measure
√
u′2/U = 0.4 very near the wall. Somewhat

less stringent guidelines for maximum l+ are given by Ligrani & Bradshaw (1987).
By measuring the maximum of the near-wall peak in u′2 with increasingly small wire
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velocity. At Reθ = 13 000: •, LDA; ⊕, hot wire. At Reθ = 1430: 4, LDA; 5, hot wire.

length, they recommend l+ < 20− 25 for resolving the near-wall turbulence. This
result is supported by Khoo, Chew & Li (1997), who conclude that l+ < 22 resolves
u′2 for y+ > 5. Johansson & Alfredsson (1983) report a 10% decrease in the near-wall
peak of u′2 in comparing results of a wire with l+ = 32 to those of a wire with
l+ = 16.

It should be noted that it is only useful to quote a maximum allowable wire length
in viscous units if a minimum allowable wall height is also quoted in viscous units,
because l/y is the essential parameter. The data presented here indicate that Ligrani
& Bradshaw (1987) and Khoo, Chew & Li (1997) are rather optimistic, and that
the commonly measured trend of an increasing u′2 peak at low Reynolds number,
followed by a decrease at high Reynolds number, is consistent with a well-resolved
u′2 measurement at low Reynolds numbers, followed by a gradual loss of spatial
resolution with increasing Reynolds number.

3.2.2. A new scaling for u′2

The Reynolds-number dependence of u′2 contradicts (3.11). To resolve this incon-
sistency, Townsend (1961) proposed that the turbulent motion in the near-wall region
consists of the superposition of ‘active’ and ‘inactive’ motions. The active motions
produce the shear stress, and scale on inner variables. The inactive motion is a ‘mean-
dering or swirling motion made up from attached eddies of large size which contribute
to the Reynolds stress much further from the wall than the point of observation.’ The
contribution to u′2 from the inactive motions presumably scales on y/δ, which results

in the Reynolds-number dependence of u′2 (Bradshaw 1967).

The failure of u′2
+

to collapse has led researchers to experiment with a variety
of inner–outer mixed scalings. Perry & Li (1990) use a mixed lengthscale which is
proportional to δ∗

√
2/Cf to plot u′2 data. George & Castillo (1997) conclude from

asymptotic analysis of the Navier–Stokes equations that the proper velocity scale for
u′2 is U2

e . Fernholz & Finley (1996) use the Rotta (1962) lengthscale ∆ = y/δ∗
√
Cf/2

to plot turbulence quantities.
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Cf/2 in mixed–inner coordinates. Symbols in table 1.
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Figure 13. u′2
+√

Cf/2 in mixed–outer coordinates. Symbols in table 1.

The observation that the peak magnitude of u′2
+

changes roughly proportionally
to Re0.1

θ led us to use a mixed inner and outer velocity scaling for u′2. Figure 12 is a

plot of u′2
+√

Cf/2, (or equivalently u′2/uτUe), vs. y+, which shows remarkably good
collapse of the near-wall peak at y+ = 14 out to y+ ≈ 60. The same scaling vs. y/δ
is shown in figure 13, and shows good collapse of the data in the outer region. This

scaling will be denoted by u′2
◦
.

Classical arguments do not support any scaling other than u2
τ for the inner region,

but there is a vast quantity of data which demonstrates that this velocity scaling does
not have any universal behaviour, particularly in the log region and outer region.
A possible justification for a mixed velocity scaling comes from the energy balance
of the boundary layer. The total power dissipated by the boundary layer scales on
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Ueτw , which, for constant density flow, is proportional to Ueu
2
τ . Thus, the total rate of

energy dissipation by the turbulence depends on both Ue and uτ.
Using the boundary layer approximations, the rate of energy transfer from the

outer part of the boundary layer to the inner region can be expressed as (Rotta 1962)

1

ρ

d(τwU)

dy
= −u′v′dU

dy
+ ν

(
dU

dy

)2

, (3.18)

indicating that the energy is lost to the turbulence through −u′v′(dU/dy), and to
direct dissipation by the mean velocity gradient. The energy lost to the turbulence
appears as the turbulent kinetic energy production term in the transport equation
for u′2, showing that the energy from the mean flow is first transferred to u′2, and
then redistributed by pressure and turbulent transport to the other Reynolds stresses.
Since the rate at which energy is dissipated by the boundary layer is proportional
to Ueu

2
τ , it is plausible that the magnitude of u′2 depends on both uτ and Ue. It is

difficult to say, however, why it would scale on the product of Ue and uτ. It is possible
that the behaviour of

√
Cf/2 is merely fortuitous, and is actually masking other

Reynolds-number effects which are genuinely responsible for the observed behaviour.

The collapse of the u′2
◦

profiles over this wide range of Reynolds number, however,
is convincing empirical evidence of the effectiveness of this scaling in defining self-
similar profiles for u′2. Since the ‘active’ motions should scale on u2

τ , the success of
this mixed scaling indicates that the fraction of turbulent kinetic energy carried by
‘inactive’ motions is approximately uτ/Ue (or

√
Cf/2), the ratio of inner to outer

velocity scales.
A study by Osterlund (1999) measured u′2 with hot wires in a facility large enough

to maintain l+ < 10 for Reθ up to 10 000. He found that the near-wall peak in u′2
+

increases with Reynolds number. Replotting these data in u′2
◦

coordinates, the peaks
collapse to 0.30, with no apparent Reynolds-number trend. While this is slightly
below the 0.32 peak measured here, the combined uncertainties of the experiments
overlap, which supports the universality of this scaling. Since this result has profound
implications for turbulence modelling, it is imperative that it be corroborated by other
high-Reynolds-number experiments with high enough spatial resolution to accurately
resolve the Reynolds stresses.

3.3. Wall-normal normal stress

Measurements of the near-wall variation of v′2 with Reynolds-number are very rare.
Almost all the data are from experiments which used cross-wires, which cannot come
nearly as close to the wall as a single-wire probe, and even magnitudes measured in
the outer region with different probes are not in good agreement. Fernholz & Finley
(1996) show cross-wire measurements compiled from Andreopoulos et al. (1984),
Roach & Brierley (1989), Erm & Joubert (1991), Bruns et al. (1992), and Fernholz et

al. (1995), which suggest the location of the maximum v′2
+

follows

y+(v′2
+

max ) = 0.071 Reθ, (3.19)

for 2500 < Reθ < 58 000. The data also show a general increase in the magnitude of

v′2
+

with increasing Reynolds number, although the scatter is quite large.
Sreenivasan (1989) plots the peak location from 12 different hot-wire data sets,

and finds that the peak location of the maximum v′2
+

is also a strong function of
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Figure 14. v′2 in inner–inner coordinates. Symbols in table 1.
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Figure 15. v′2 in inner–outer coordinates. Symbols in table 1.

Reynolds number. He defines a rough fit to the data:

y+(v′2
+

max ) = (Reδ
√
Cf/2)0.75. (3.20)

Figure 14 shows the present v′2 measurements in inner coordinates, and figure 15
shows the same data plotted vs. y/δ. Although there is some scatter, no Reynolds-
number trend is evident in the collapse of the profiles in inner coordinates from

the wall to the end of the log region. A plateau of v′2
+ ≈ 1.35 extends from

y+ = 100 to y/δ ≈ 0.25. The exception is the lowest-Reynolds-number case, which is
evidently showing low-Reynolds-number effects. The data show good agreement with
the calculation of Spalart (1988), indicating the accuracy of the measurements at low
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Figure 16. Comparison of cross-wire hot-wire and LDA measurement volume sizes.

Reynolds number. The drop in v′2
+

is fairly linear in y/δ for y/δ > 0.25, although
the data are too scattered to make any firm conclusions.

The universality of v′2
+

in the inner region is consistent with the scaling arguments
used to derive the law of the wall. To attain self-similar profiles in the outer region,
the correct lengthscale is δ, as shown by Townsend (1956). This results in the different
length scales for the inner and outer region:

v′2
+

inner region = f(y+), (3.21)

v′2
+

outer region = f(y/δ). (3.22)

In general, since the ratio of these lengthscales is always a function of Reynolds
number, a Reynolds-number-dependent matching function is required to connect the
inner and outer regions. No matching function is necessary, however, if both functions
go to a constant, e.g. 1.35, although the location of the overlap may still be a function
of Reynolds number. These data indicate that v′2 shows reasonable self-similarity over
the entire boundary layer.

Since the magnitude of v′2 scales on u2
τ , the transfer rate of turbulent energy from

u′2 to v′2 must scale on inner coordinates, despite the fact that the magnitude of u′2
does not scale on u2

τ .
Figure 16 is a scale drawing for comparing the relative sizes of the cross-wire and

the LDA measurement volume, with the viscous lengthscales at different Reynolds
numbers. The cross-wire probe is shown in an end-on view, positioned to measure
u′v′ and v′2. It has an etched active length of 600 µm, and a wire spacing of 400 µm,
making it smaller than commercially available cross-wire probes. A comparison of
the cross-wire size with the viscous lengthscales indicates that spatial resolution is
a significant problem for cross-wires even at low Reynolds numbers. As figure 16
shows, the active lengths of the wire are positioned across the mean velocity and
Reynolds stress gradients. This makes it difficult to define where the measurement is
being made, because the hot wire is a highly nonlinear device.

The most serious problem with a cross-wire, however, is that it combines the
velocity component normal to one wire with the velocity component normal to the
other wire, in order to resolve the two velocity components at the point between the
wires. Extrapolating the wire-normal velocity components to the centre point between
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the two wires gives

Vc,1 = V1 +
L

2

∂V1

∂z
+ · · · , (3.23)

Vc,2 = V2 − L

2

∂V2

∂z
+ · · · , (3.24)

where Vc,1 is the velocity component perpendicular to wire 1 extrapolated to the point
in the centre of the wires, V1 is the measured velocity component perpendicular to
wire 1 at wire 1, and correspondingly for wire 2. Note that the use of L for the distance
is rather optimistic, since it is actually the smallest distance between the wires. For an
ideal cross-wire with wires at ±45◦, the velocity components are resolved into tunnel
coordinates:

u =
1√
2

(Vc,1 + Vc,2) =
1√
2

(V1 + V2) +
L

2
√

2

(
∂V1

∂x
− ∂V2

∂x

)
+ · · · , (3.25)

v =
1√
2

(Vc,1 − Vc,2) =
1√
2

(V1 − V2) +
L

2
√

2

(
∂V1

∂x
+
∂V2

∂x

)
+ · · · . (3.26)

The first error term is of order L, indicating that an instantaneous spanwise velocity
gradient between the two wires contributes to the error in measurement of both u
and v. While this is not a substantial problem for the u-component, since V1 and V2

are both large, the error term can be very large for the v-component, since V1 and
V2 are very nearly the same size. The problem arises because the measured velocity
component at each wire is

V =

{
w2 +

(
u√
2
± v√

2

)2
}0.5

, (3.27)

so any difference between the wires in u or in w will be interpreted as v. Most
unsettling is equation (3.26), which shows that even if the spanwise gradient at the
two wires is the same, i.e. a turbulent eddy which is larger than the wire spacing, there
is a contribution from the first-order error term. Thus, a cross-wire will erroneously
measure v′2 from any eddy which cools one wire more than the other, whether the
eddy is small enough to pass over only one wire, or large enough to create a spanwise
gradient across both wires. These effects will cause v′2 to be overestimated by a
cross-wire (Moin & Spalart 1987; Park & Wallace 1993), and are consistent with the

tendency of cross-wires to show an increasing value of v′2
+

with increasing Reynolds
number.

3.4. Reynolds shear stress

The measurement of u′v′ with a cross-wire is also problematic, as evidenced by the
many data sets which fail to show −u′v′ approaching u2

τ near the wall. This quan-
tity also is difficult to measure accurately with standard laser Doppler velocimetry,
because the results are usually somewhat dependent on the chosen coincidence time
interval, which determines whether a u-component measurement and a v-component
measurement came from the same particle. The present LDA system, however, obtains
both u-component and v-component information from each burst, and therefore does
not have any dependence on coincidence (see DeGraaff & Eaton (1999) for further
details).
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Figure 17. u′v′ in inner–inner coordinates. Symbols in table 1.

Sreenivasan (1989) plots the y+ location of the peak in u′v′+, and fits the correlation:

y+(u′v′+max ) = 2 (Reδ
√
Cf/2)0.5. (3.28)

Fernholz & Finley (1996) do not assume a priori that the correct maximum for u′v′+

is unity, and conclude from the data of Klebanoff (1955), Bruns et al. (1992), Klewicki
et al. (1994), and Fernholz et al. (1995), that despite rather large scatter, there is no

Reynolds-number dependence of the peak magnitude of u′v′+. Their plot indicates the
peak value is between 0.8 and 1.0, and they find that the peak location is a function
of Reynolds number:

y+(u′v′+max ) = Reθ
0.61. (3.29)

Because the total shear stress consists of the Reynolds stress and the viscous shear
stress, we can conclude several things a priori. First, since the velocity gradient at the
wall must scale the velocity gradient near the wall, and since the total shear stress
near the wall cannot change rapidly in the wall-normal direction for a slowly growing
boundary layer, u′v′ must scale on u2

τ near the wall (equation (3.13)). Secondly, in a
flat-plate boundary layer, the maximum total shear stress, u′v′ + ν(dU/dy), occurs at
the wall. These two statements imply that the peak in the Reynolds stress must be
near the wall, the peak location must scale on y+, and it must have a magnitude less
than but nearly equal to u2

τ .
The Reynolds shear stress is shown in figure 17 vs. y+, and in figure 18 vs. y/δ.

The behaviour is similar to v′2, although the data are somewhat more scattered. The

magnitude of u′v′+ reaches a peak of approximately 0.95 at y+ ≈ 70. The outer layer
again shows an approximately linear decrease with y/δ. In contrast to v′2, u′v′ does
not show an extended plateau of constant magnitude. Note that the magnitudes of the
slightly non-negative values of u′v′ very near the wall for the lowest-Reynolds-number
case are less than the near-wall uncertainty, and should be zero.

The lowest-Reynolds-number case does not agree well with the calculation of
Spalart (1988), however, the LDA does consistently measure the total shear stress
equal to the wall shear stress throughout the near-wall region for the other Reynolds-
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Figure 18. u′v′ in inner–outer coordinates. Symbols in table 1.
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Figure 19. Sublayer behaviour of u′v′. Symbols in table 1.

number cases (which will be shown in figures 20 to 24). It therefore seems likely that
the u′v′ peak is accurately measured for this boundary layer, suggesting that either
the boundary layer for this low Reynolds-number is not ‘canonical’, i.e. the slight
favourable pressure gradient has depressed the u′v′ peak, or that the calculation has
over-predicted u′v′.

Figure 19 shows the sublayer behaviour u′v′. The first term of the Taylor series
expansion of u′v′ around y = 0 is (Monin & Yaglom 1971)

u′v′ = A2(y
+)3 + · · · . (3.30)

Fitting the experimental data yields A2 = 0.0009, which is fairly accurate for y+ < 6.
The total shear stress is the sum of the viscous shear stress and the Reynolds

shear stress. These three quantities are plotted in figures 20 to 24 for each Reynolds
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Figure 21. Shear stress distribution for Reθ = 2900. Symbols as in figure 20.

number. It should be noted that there is additional uncertainty in computing the
viscous shear, particularly for the closely spaced data points near the wall, since the
data must be differentiated.

With the exception of the lowest-Reynolds-number case (figure 20), the total stress
is approximately equal to the wall stress over a substantial region extending from
the wall (figures 21 to 24). The viscous stress profiles show a small contribution to
the total shear from viscosity even above y+ = 100. For figures 21 to 23, the viscous
shear and Reynolds stress cross at y+ ≈ 10, and τ/τw ≈ 0.5. This result provides
strong evidence for the universality of the near-wall region. For the lowest-Reynolds-
number case, the total shear stress drops below u2

τ much closer to the wall, and the
viscous stress contribution extends further from the wall. These are presumably low-
Reynolds-number effects, i.e. the viscosity is important through a substantial fraction
of the inner region, so the boundary layer has not yet achieved self-similarity. The
point where the viscous shear and the Reynolds shear are equal is the position of
maximum turbulent energy production (Rotta 1962).

Figure 25 shows the total stresses from figures 20 to 24 plotted vs. y/δ. The linearly
decreasing total shear stress profile of a channel flow is shown for comparison. The
y/δ axis scale is logarithmic to emphasize that the assumption of a ‘nearly constant
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Figure 22. Shear stress distribution for Reθ = 5200. Symbols as in figure 20.
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Figure 23. Shear stress distribution for Reθ = 13 000. Symbols as in figure 20.

stress region’ near the wall is not inconsistent with a linearly decreasing total stress
profile. As figure 17 shows, however, these data are too scattered to firmly determine
the total shear stress profile shape for an equilibrium boundary layer.

3.5. Reynolds stress production

There are very few boundary-layer data which show the near-wall peaks of the
turbulent kinetic energy production or Reynolds shear stress production. In their
review, Gad-el-Hak & Bandyopadhyay (1994) report (without showing data) that
the peak production of turbulent kinetic energy occurs at y+ ≈ 15, independent of
Reynolds number.

The production of turbulent kinetic energy is shown in figure 26. The data collapse
well in inner coordinates, with the exception of the lowest-Reynolds-number case,
which shows a depressed near-wall peak. It is clear again that the lowest-Reynolds-
number case is influenced by low-Reynolds-number effects.

Differentiating equation (3.18) with respect to dU/dy shows that the maximum
production occurs where

−u′v′ = ν

(
dU

dy

)
=
u2
τ

2
, (3.31)
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Figure 24. Shear stress distribution for Reθ = 31 000. Symbols as in figure 20.
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which results in a peak production of

−u′v′
(

dU

dy

)
=
u4
τ

4ν
. (3.32)

A dashed line figure 26 shows this value, which agrees, within experimental uncer-
tainty, with the peak in the data at y+ = 10.

Assuming that the total shear stress is approximately constant and equal to τw in
the log region implies that the production should lie along the line

−u′v′+
(

dU+

dy+

)
=

1

κy+
. (3.33)

This line is plotted in figure 26, and agrees with the data in the log region, with the
possible exception of the lowest-Reynolds-number case.

Figure 27 shows the production term of the Reynolds shear stress transport equa-
tion, after making the standard boundary-layer approximation, ∂/∂y � ∂/∂x. The

peak of v′2(∂U/∂y) is lower than the turbulent kinetic energy production peak, and
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Figure 26. Turbulent kinetic energy production. Symbols in table 1. The dashed line indicates the
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Figure 27. Reynolds shear stress production. Symbols in table 1.

centred at y+ ≈ 20. The line (κy+)−1 is included for comparison with the u′2 pro-
duction. Since v′2 is roughly constant in the log region, the decrease in shear stress
production is largely determined by the mean velocity gradient, and therefore parallels
the (κy+)−1 behaviour. The scatter in the data for y+ < 4 is due to the multiplication
of the uncertainty of the near-wall v′2 measurements by the large velocity gradient.

4. Conclusions
The following behaviour defines the equilibrium boundary layer:
(i) The log law collapses the streamwise mean velocity in the inner layer well.

Because the wall shear stress was inferred from a log law fit, no firm conclusions
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can be drawn about the accuracy of the log law from this data. However, since
the mean streamwise velocity data collapse well in the sublayer, and since the total
shear stress near the wall is near unity, we can conclude that the log law works well
for 1430 < Reθ < 31 000. We can also conclude that any experiment which hopes to
resolve log law versus power law controversies must have a very accurate independent
measurement of the wall shear stress.

(ii) The streamwise Reynolds stress does not scale on u2
τ even in the near-wall re-

gion. Remarkably good collapse is attained with the mixed scaling, u′2
◦ ≡ u′2+√

Cf/2,
showing a near-wall peak value of approximately 0.32 at y+ = 14.

(iii) The wall-normal Reynolds stress collapses well on the wall shear stress, attain-
ing a plateau value of approximately 1.35 from y+ > 90 to y/δ < 0.25. Above this

plateau, v′2 decreases approximately linearly.
(iv) The Reynolds shear stress is well collapsed on uτ, and falls fairly linearly

from the wall, although the data are too scattered to establish a definite total
shear stress profile shape. The Reynolds shear stress attains a maximum value of
approximately 0.95 at y+ ≈ 70 for 2000 < Reθ < 31 000. The lowest-Reynolds-number
case shows depressed total shear stress levels, apparently due to low-Reynolds-number
or pressure-gradient effects.

(v) The turbulent kinetic energy production collapses well on inner scales. The
maximum normalized turbulent kinetic energy production occurs at y+ ≈ 10, and has
a value of 0.25, consistent with the concept that the total shear stress very near the
wall is approximately the same as the shear stress at the wall.

These points are emphasized in figures 28 and 29, which compare just the Reθ =
2900 case with the Reθ = 13 000 case. The lengthscale of the inner region is ν/uτ, so

v′2
+

, u′v′+, and TKE production should collapse in the inner region in figure 28. The
dashed line in the figure indicates where y/δ = 0.2 for the lower-Reynolds-number

case, and below this line v′2
+

, u′v′+, and the turbulent kinetic energy production
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collapse fairly well. The inner region extends to y+ = 850 for the Reθ = 13 000 case.

It is clear that the two u′2
+

profiles do not collapse with Reynolds number. In the
outer region, the lengthscale is δ, and figure 29 shows fairly good collapse of v′2 and

u′v′ above the dashed line at y/δ = 0.2. Again, u′2
+

does not show good collapse.
Contrary to many previous boundary-layer studies, we find that the classic inner/

outer scalings proposed by Townsend (1956) are fairly successful in scaling the
Reynolds stresses. Provided the momentum-thickness Reynolds number is above ap-
proximately 2000, the wall-normal Reynolds stress and Reynolds shear stress collapse
fairly well onto Reynolds-number-independent self-similar profiles. The mystery, of
course, is the streamwise Reynolds stress, for which empirical evidence suggest the
proper scaling is u2

τ

√
2/Cf . The authors await further empirical or theoretical evidence

of this scaling.
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